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Thermal convection in a rotating fluid: 
effects due to bottom topography 

By HARRY LEACH? 
Geophysical Fluid Dynamics Laboratory, Meteorological Office, Brscknell, England 

(Received 26 January 1980 and in revised form 10 November 1980) 

A study has been made of the effects of non-axisymmetric bottom topography in a 
differentially heated, rotating fluid annulus. In  the absence of free baroclinic waves the 
disturbance produced by topography of vertical dimensions typically much less than 
the depth of the fluid and horizontal dimensions comparable to the gap width is steady 
and confined to the lower part of the fluid. The maximum amplitude of this disturbance 
depends on the angular speed of rotation of the apparatus and vanes with height, being 
very small above the level where the basic azimuthal flow reverses. The flow pattern 
shows a closed circulation displaced relative to the topography in the downstream 
direction. In  the presence of free baroclinic waves the topographic wave extends 
throughout the whole depth of the fluid. Determinations of the amplitude and phase 
of the various azimuthal Fourier components present show that the topographically 
forced components exchange energy with the free components as they drift relative 
to  the topography. 

1. Introduction 
The effect of bottom topography on the dynamics of rotating, thermally convecting 

fluids is of great interest for a number of geophysical systems. The present work con- 
cerns laboratory experiments conducted to investigate some of these effects. The 
apparatus used was an annulus; an annular tank of fluid whose inner and outer walls 
are maintained at different temperatures and which rotates uniformly and steadily 
about its vertically-arranged axis of symmetry. The experiments show that bottom 
topography can produce disturbances in a system that would otherwise have axisym- 
metric flow and that when free waves are also present these disturbances undergo non- 
linear interactions with the topographically generated waves. 

Previous experiments in which purely axisymmetric boundaries were used (see 
Hide & Mason 1975 for a review) show the existence of a variety of flow regimes 
depending on the applied conditions of temperature difference and rotation speed. The 
flow regimes can be basically divided into two classes; namely those in which the flow 
is characterized by axial symmetry and those where the flow is non-axisymmetric. In 
this work the term symmetric will be used to describe flows which would be axisym- 
metric in the absence of topography. The regular or irregular waves that are seen in 
non-axisymmetric flows are produced by a mechanism known as baroclinic instability. 
This instability was investigated theoretically by Eady ( 1949). For quasi-geostrophic 
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flows with large Richardson number the presence or absence of growing perturbations 
was found to depend on the parameter 

where g is the acceleration due to gravity, apo/az is the basic vertical density gradient, 
d the depth of the fluid, Q the apparatus rotation speed, p the mean density of the 
fluid and a and b the inner and outer radii of the annulus. If B > 0.583 all modes would 
be stable but if B < 0.583 long waves would grow. These results were found to be in 
reasonable agreement with experiments. 

Studies of rotating stratified flow over topography have now been reported by a 
number of authors. An experimental investigation of Taylor columns in a stratified 
flow was made by Davies (1972) who showed that the disturbance due to his spherical 
obstacle extended to many times the height of the obstacle when N f - l s  0.1. Theo- 
retical studies of this problem have been made by Hogg (1973), Huppert (1975) and 
Redekopp (1975). Earlier studies of the homogeneous case (B = 0) by Hide (1961), 
Hide & Ibbetson (1966) and Ingersoll(l969) had identified 

S = h/dR, 

where h is the height of the topography, d the fluid depth and R a Rossby number 
based on the horizontal length scale of the topography, as the crucial parameter in the 
Taylor-column problem; when S 2 2 a Taylor column can form. Hogg (1973) showed 
that in the strattified case (B > 0) S takes a critical value larger than 2 when B > 1 
and when B 9 1, the critical value of S tends to B. Huppert (1975) subsequently 
showed that in the stratified case closed circulations could occur for obstacles 
with any S if they had vertical sides. In the present study little difference waa ob- 
served between obstacles with vertical sides and smooth obstacles but this may be 
attributed to the experimental flow not being quasi-geostrophic and being slightly 
viscous. 

These authors all avoided the problem of sheared flows with a level-of-no-motion, a 
reversal at some level within the flow. As discussed by de Szoeke (1972) this leads 
to  the possibility of topographically forced baroclinic waves. The results presented 
below also show that the presence of a flow reversal leads to effects not considered 
in the stratified Taylor column studies. Fultz & Spence (1967) reported observing lee 
waves downstream of a ridge placed in an annulus. 

In a paper on spatially growing baroclinic waves Hogg (1976) has shown that it is 
possible for the equations for a simple baroclinic flow to have spatially growing solu- 
tions with vertical structures similar to those reported below. It is, however, unfor- 
tunately not easily possible to compare his results quantitatively with those presented 
here. 

Visual observations of the effects of topography on free baroclinic waves in the 
annulus have been reported by Kester (1966), Fultz & Spence (1967) and Yeh & 
Chang (1974). In all these papers the authors describe how the wave lobes are distorted 
in the region of the topography. In this paper I present the results of experiments in 
which these interactions are analysed in terms of single Fourier components. 

In a recent paper on baroclinic flow over topography Charney & Straus (1980) have 
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FIGURE 1. Detailed diagram of experimental apparatus showing annulus mounted on turntable. 
The drive system is not shown. A ,  stand; B,  bearing assembly; C, turntable; D ,  tripod; E ,  
camera; F,  base; G: inner bath; H, working fluid; I ,  outer bath; J ,  fluid slip ring; K, false bases; 
L, lid; M ,  window. 

made use of a two-layer, quasi-geostrophic spectral, numerical model. They show that 
topography can produce disturbances in a flow that would be otherwise stable and that 
spontaneous baroclinic instability is modified by the presence of topography. 

2. Apparatus & Procedure 
The apparatus (see figure 1) was similar to that used in other annulus experiments 

(for example see Douglas, Hide & Mason 1972). The thermocouple arrays used to 
measure temperatures in the fluid were suspended from the lid. The topography was 
made either from pieces of acrylic cut to the desired form or by laminating thin sheets 
of light alloy. Observation of flow patterns was made by streak photography (see 
Douglas et al. 1972). The principal working fluid was a 16 yo solution of glycerol in 
water of viscosity 1.32 mm2 s-1 and density 1%28 Mg m-3 containing 0.5 mm diameter 
polystyrene beads which are neutrally buoyant in this solution. In all experiments a 
wall-to-wall temperature difference of 10 K was used. 

In  the rotating lid experiment five thermocouples were used arranged vertically in a 
row on a single constantan wire suspended from the lid. A diagram of the rotating lid 
appears in figure 2. The thermocouple array was moved very slowly through the fluid 
over the topography to investigate the disturbance due to the topography at different 
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I 
Side elevation 

FIGURE 2. Diagram of rotating lid used to move thermocouple array for measuring stationary, 
topographic waves. The lid itself is ‘top-hat’-shaped and suspended from the support so that it 
is just in contact with the working fluid. Drive is by a small electric motor through a worm and 
wheel. A, tripod support standing on top of annulus; B, rotating lid; C, gear wheel; D, worm 
gear; E, electric motor; F, drive shaft; (7, thermocouple probe. 

levels and azimuths in the flow. In  the spectral analysis experiments a ring of con- 
stantan wire was positioned around the annulus in the centre of the channel and 
sixteen individual copper wires soldered to it at regular azimuthal spacing. The 
voltages from the thermocouples were measured and recorded automatically on 
computer-compatible media by an electronic data-acquisition system. In the rotating 
lid experiment the temperatures at each of the five different levels were sampled every 
4 s so that a series of 450 points for each level was obtained during a single revolution 
of the lid, which took 30 minutes. These series were subjected to Fourier decomposition 
so that the amplitude of each stationary wave number could be found a t  the five levels. 
From the difference of the mean temperatures at the highest and lowest levels a mean 
vertical temperature gradient (C%”,,/&) was found which could be used to calculate the 
parameter B. In  the spectral analysis experiments the temperatures at the sixteen 
points around the ring were sampled sufficiently frequently to avoid aliasing high 
frequency signals and for sufficiently long to allow several wave lobes to pass a given 
point within the annulus. Each scan of the temperatures was Fourier analysed in order 
to observe how the energy was distributed between the different spectral components 
and how this distribution varied in time. 
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3. Experimental results 
lgymmetric regime 

Observations of the flow patterns associated with isolated bottom topography in the 
symmetric regime were made using streak photography. Near the mid-level of the 
fluid, where the zonal motion due to the thermal wind effect is relatively small, con- 
ditions for the observation of disturbances in the flow are best. At low rotation speeds 
little disturbance was visible, figure 3(a),  but at  higher rotation speeds, lower By 
figure 3 ( b ) ,  a distinct closed circulation could be seen. This feature lies to the west of 
the topography, which is the downstream side for flow in the lower part of the annulus. 
For similar experimental conditions and topographic heights the shape of the topo- 
graphy did not noticeably affect the form of the disturbance; even the smooth topo- 
graphy with zonal wavenumber 3 had a closed circulation associated with each peak. 
Huppert’s (19%) results expect a dependence on the shape of the topography but his 
theory was for an inviscid and quasi-geostrophic flow, which is not the c w  in these 
experiments. 

In order to investigate the nature of the disturbance more closely measurements 
were made of the temperature at five different levels in the flow by means of a rotating 
lid which carried an array of thermocouples. In  these experiments topography of the 
form 

was used. Here r and 9 are the radial and azimuthal co-ordinates, tn the azimuthal 
wavenumber of the topography and a and b the hner  and outer radii of the annulus. 
The temperatures measured as a function of azimuth at  the five levels were subject to 
Fourier decomposition. The principle result of this analysis is that the disturbance of 
the temperature field as represented by the amplitude of the forced wavenumber is 
confined to the lower half of the fluid below the level of no motion, see figure 4. This 
shows the amplitude of the disturbance as a function of depth for a series of different 
values of B. The amplitude is normalized by the product of the topographic height and 
the mean vertical temperature gradient (h,(aT,/az)). The size of the error bars were 
determined by conducting control experiments without topography and processing 
the data obtained in the same way as for experiments with topography, the amplitudes 
obtained without topography were taken to be the error in the measurements with 
topography. The lines joining the data points are not supposed to represent any 
functional form but serve merely to connect points measured for a particular value of 
B. As can be seen from figure 4 the amplitude of the disturbance increases with increas- 
ing apparatus rotation speed; the amplitude of the disturbance at the second level 
from the bottom as a function of Bi is shown in figure 5 ,  The straight line drawn 
through the points is a linear regression in the semi-logarithmic plme. The reason for 
trying this fit waa the expectation from geostrophic theory (see Robinson 1960) that 

amplitude ac exp ( - Bi b), 

where k is the wavenumber of the topography and x the vertical co-ordinate. The 
assumption of geostrophy for these experiments is not good (the Rossby number is 
perhaps 0.1 ) but despite that the straight line fits the data reasonably well. 
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FIGURE 8. Spectra of the topographically forced disturbance at the five levels of observation for 
the case = 1.05rads-1, Nf-1 = 0.19, B = 0.44; d / ( b - a )  = 3.44, hold = 0.035. Note the 
predominance of the forced wavenumber, rn = 3, and its harmonics. 

The dependence of the amplitude on z for a particular value of B is clearly less in 
agreement with the simple theory at  lower values of B (figure 4). 

The variation of phase with height for the runs shown in figure 4 is shown in figure 6. 
Some of the results show a steady rate of change of phase with height with a phase shift 
of about 1 radian between top and bottom. This is not always the case but for the profile 
in question, d, the amplitude at  the highest levels is very small indeed and in principle 
indeterminate. 

Robinson's (1960) theory predicts no change of phase with height. In  the time- 
independent case the phase shift with height is due to Ekman pumping (Leach 1975); 
the time for a single fluid particle to pass over the topography is a few seconds com- 
pared with a spin-up time of about two minutes. 

The amplitude at the forced wavenumber was also found to vary with the azimuthal 
wavenumber of the topography. Figure 7 shows curves for similar conditions for 
m = 1 and m = 3 which show that the maximum amplitude of the disturbance is 
larger for m = 3. 

In figure 4 we saw the vertical structure of the disturbance at the forced wavenumber, 
m = 3. In  figure 8 spectra of all the forced waves are shown and it can be seen that 
besides the forced wave number its harmonics also have relatively large amplitudes. 
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I I 
1 2 

Dimensionless amplitude 

FIUUBE 9. Dimensionless amplitude w. dimensionless depth of topographically forced wave in 
the presence of spontaneous baroclinio waves showing that the topographic disturbance is not 
confined to the lower part of the fluid. = 2.94 rad s-l, Nj-1 = 0.082, B = 0.037, d / ( b - a )  = 
2.34, m = 3, h,/d = 0.060. 

Wave regime 

In the presence of spontaneous baroclinic waves the topographic disturbance fills 
the whole depth of the fluid, see figure 9. As in the symmetric regime the forced wave 
and its harmonics predominates, see figure 10. 

Observations of the wave pattern were made using still and cine photography and 
these showed that in some cases the waves were severely disrupted by isolated topo- 
graphy. Near the mid-level, where the zonal motions are weak relative to the eddy 
motions, the passage of a wave over the ridge could be followed in detail. As a wave 
lobe approached from the west it slowed down and then broke up as it passed over the 
ridge and did not reform until about 90" to the east. This agrees with the observations 
of Kester (1966) and Fultz & Spence (1967). In  order to observe these phenomena in 
terms of wave interactions, measurements of wave spectra were made using the 
thermocouple ring technique, see Hide, Mason & Plumb (1  977) who used this technique 
to study the interactions of the spontaneous waves with each other. Spatial Fourier 
analyses of the temperatures measured around the ring were conducted and the 
variation in time of the amplitudes and phases of the different wave numbers observed. 
This revealed that at relatively low rotation speeds the dominant components of the 
topographic and drifting waves exchanged energy over a period equal to that required 
for the drifting wave pattern to move by one lobe. This is shown in figure 11 where the 
amplitude and phase of the dominant wave numbers are plotted against time and it 
can be seen that the amplitudes of the topographic and drifting waves are in antiphase. 
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FIGIJRE 10. Spectra of the topographically forced disturbance at the five levels of observation 
in a flow containing spontaneous baroclinic waves. C2 = 2.94 r d  s-l, Nf-1 = 0.082, B = 0.037, 
d/(b -a) = 2.34, hold = 0.060. Notice how the forced wave, m = 3, and its harmonica penetrate 
to the top of the flow. 

Free wave 

Topographic wave 
0.5 

7 
1 2 3 4 0.0 

Tme/ks 
FIGURE 11. Amplitude and phase plotted against time for topographic and free waves. The 
topography was an isolated ridge with hld = 0.083; d/(b-a) = 2-60, R = 2.0 rad s-l. the 
wall-to-wall temperature difference was 11.9K, B x 0.12. The topographic wave was m = 1 
end the free wave was m = 3. Note the antiphase relationship of their amplitudes. 
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0 1000 
Time (s) 

2000 

FIGURE 12. Amplitude and phase plotted against time for topographic and free waves. The 
topography was an isolated ridge with h/d = 0.195; d / ( b - a )  = 1.71, 0 = 1.9Orarls-1, the 
wall-to-wall temperature difference was 6.3K, B x 0.04. 0,  m = 1; 0 0 0, m = 2; 
-- , m = 3. The free wave was m = 3; m = 1 and m = 2 were quasi-stationary. Notice the 
more complicated relationship of amplitude and phase compared to figure 11. 

At lower values of B this simple relationship was replaced by more complicated inter- 
actions involving more than two wave components with energy passing round rather 
that just back and forth, see figure 12. 

The time scale of these interactions, 140s (figure 11)  and 180s (figure 12), is some- 
what longer than the spin-up time, d/(2 Qv)*, of about 50 s. 

4. Conclusions 
The experiments with bottom topography in the absence of free baroclinic waves 

show that a steady disturbance is forced which is confined to the lower part of the 
fluid, in contrast to the results of studies of stratified Taylor columns where the 
topographic disturbance decays more steadily with height. The topographic disturb- 
ance has most of its energy in the forced wavenumber and its harmonics. In flows that 
contain spontaneous baroclinic waves the topographic wave is not trapped but fills the 
whole fluid. The free waves and topographic waves exchange energy nonlinearly as the 
free waves drift past the topography. 

The work described in this paper was conducted while the author was the recipient 
of a Natural Environment Research Council Research Studentship. He would also 
like to thank Dr R. Hide and other members, past and present, of the Geophysical 
Fluid Dynamics Laboratory for their guidance and support. 
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